Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203824

RESUMO

The role of marine environments in the global spread of antibiotic resistance still remains poorly understood, leaving gaps in the One Health-based research framework. Antibiotic resistance genes (ARGs) encoding resistance to five major antibiotic classes, including sulfonamides (sul1, sul2), tetracyclines (tetA, tetB), ß-lactams (blaCTX-M, blaTEMblaVIM), macrolides (ermB, mphA), aminoglycosides (aac3-2), and integrase gene (intl1) were quantified by RT-qPCR, and their distribution was investigated in relation to environmental parameters and the total bacterial community in bottom layer and surface waters of the central Adriatic (Mediterranean), over a 68 km line from the wastewater-impacted estuary to coastal and pristine open sea. Seasonal changes (higher in winter) were observed for antibiotic resistance frequency and the relative abundances of ARGs, which were generally higher in eutrophic coastal areas. In particular, intl1, followed by blaTEM and blaVIM, were strongly associated with anthropogenic influence and Gammaproteobacteria as their predominant carriers. Water column stratification and geographic location had a significant influence on ARGs distribution in the oligotrophic zone, where the bacterial community exhibited a seasonal shift from Gammaproteobacteria in winter to Marine group II in summer.


Assuntos
Antibacterianos , Gammaproteobacteria , Antibacterianos/farmacologia , Sulfanilamida , Aminoglicosídeos , Archaea , Resistência Microbiana a Medicamentos/genética
2.
Environ Pollut ; 338: 122700, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37804906

RESUMO

This study is based on assessing fecal indicator bacteria contamination along meteorological, hydrological and physical-chemical variables after high rainy events during the summer period. The study focused on four different coastal sites in the western and eastern Adriatic coast characterized by various geomorphological and hydrological features, levels of urbanization and anthropogenic pressures, with the aim of finding appropriate and effective solutions to ensure the safety and sustainability of tourism and public health. Detailed in-situ survey revealed a wide range of fecal indicator bacterial (FIB) across the different river mouths with concentrations of E. coli ranging from 165 to 6700 CFU 100 mL-1. It was found that nitrogen compounds track microbial load and acted as tracers for fecal contaminants. Further, a modelling tool was also used to analyze the spatial and temporal distribution of fecal pollution at these coastal sites. The integrated monitoring through high frequent survey in river waters and modeling framework allowed for the estimation of fecal indicator bacterial load at the river mouth and examination of fecal pollutant dispersion in recreational waters, considering different scenarios of fecal dispersion along the coast. This study formed the basis of a robust decision support system aimed at improving the management of recreational areas and ensuring the protection of water bodies through efficient management of bathing areas.


Assuntos
Monitoramento Ambiental , Escherichia coli , Bactérias , Contaminação de Medicamentos , Saúde Pública , Fezes/microbiologia , Microbiologia da Água
3.
Water Res ; 246: 120688, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37806125

RESUMO

Marine and ocean environments are the most widespread habitats in the world but are still the least studied from the aspect of antibiotic resistance. The indigenous and tetracycline (TET)- and sulfamethoxazole (SXT)-resistant planktonic bacterial communities were simultaneously investigated for the first time along a trophic gradient of a temperate zone, regarding their taxonomic and functional structures as well as biotic and abiotic factors affecting their dynamics as vehicles of antibiotic resistance genes (ARGs), thus impacting the ARGs distribution at seasonal and spatial scales. A total of 80 microbiomes, recovered seasonally from bottom layer and surface waters along a 68-km transect from wastewater-impacted estuary to coastal and pristine open sea in the central Adriatic (Mediterranean Sea), were analysed using 16S rRNA amplicon sequencing, PICRUSt2 bioinformatics and extensive biostatistics. Eighty-one bacterial phyla were identified, with majority (n = 49) in summer when communities were found to be more species enriched across the gradient. Microbial diversity was more site-specific and pronounced in surface microbiomes in winter. Nevertheless, both richness and community diversity decreased with distance from the coast. Although the microbiomes from human-influenced sites significantly differed from those in oligotrophic offshore area, Proteobacteria were still the most abundant phylum during both seasons at the surface and seabed along the gradient, and the major contributors to the marine resistome regarding native and TET- and SXT-resistant microbial communities. Resistome structure was more diverse in winter, whereas peptide, vancomycin and multidrug resistance modules predominated regardless of season, trophic status, or antibiotic. However, multidrug, beta-lactam resistance modules as well as macrolide, phenicol, aminoglycoside, and particularly imipenem resistance genes were much more frequent in winter, suggesting that the diversity of indigenous resistomes is highly dependent on seasonal variations of the water column, driven by thermohaline stratification and nutrients. Moreover, several pathogenic genera stood out as important carriers of multiple resistance traits in TET- and SXT-related resistomes in both seasons, particularly Acinetobacter, Vibrio, Bacillus and Pseudomonas, beside which Proteus, Serratia and Bacteroides prevailed in native resistomes. This study evidenced seasonal and spatial variations of the marine microbiome and resistome and their driving forces along the trophic gradient, providing a comprehensive insight into the diversity and distribution of antibiotic resistance in the marine ecosystem of a temperate zone.


Assuntos
Bactérias , Microbiota , Humanos , RNA Ribossômico 16S/genética , Bactérias/genética , Antibacterianos , Tetraciclina , Genes Bacterianos
4.
Sci Total Environ ; 858(Pt 1): 159720, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306843

RESUMO

Vancomycin-resistant Enterococcus faecium (VREfm) is an opportunistic pathogen among the highest global priorities regarding public and environmental health. Following One Health approach, we determined for the first time the antibiotic resistance and virulence genes, and sequence types (STs) affiliation of VREfm recovered simultaneously from marine beach waters, submarine outfall of a wastewater treatment plant and an offshore discharge of untreated sewage, and compared them with the surveillance VREfm from regional university hospital in Croatia to assess the hazard of their transmission and routes of introduction into the natural environment. Importantly, VREfm recovered from wastewater, coastal bathing waters and hospital shared similar virulence, multidrug resistance, and ST profiles, posing a major public health threat. All isolates carried the vanA gene, while one clinical isolate also possessed the vanC2/C3 gene. The hospital strains largely carried the aminoglycoside-resistance genes aac(6')-Ie-aph(2″)-Ia, and aph(2″)-Ib and aph(2″)-Id, which were also predominant in the environmental isolates. The hyl gene was the most prevalent virulence gene. The isolates belonged to 10 STs of the clonal complex CC17, a major epidemic lineage associated with hospital infections and outbreaks, with ST117 and ST889 common to waterborne and hospital isolates, pointing to their sewage-driven dissemination. To gain better insight into the diversity of accompanying taxons in the surveyed water matrices, microbiome taxonomic profiling was carried out using Illumina-based 16S rDNA sequencing and their resistome features predicted using the PICRUSt2 bioinformatics tool. An additional 60 pathogenic bacterial genera were identified, among which Arcobacter, Acinetobacter, Escherichia-Shigella, Bacteroides and Pseudomonas were the most abundant and associated with a plethora of antibiotic resistance genes and modules, providing further evidence of the hazardous effects of wastewater discharges, including the treated ones, on the natural aquatic environment that should be adequately addressed from a sanitary and technological perspective.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Microbiota , Enterococos Resistentes à Vancomicina , Humanos , Enterococcus faecium/genética , Vancomicina/farmacologia , Vancomicina/uso terapêutico , Resistência a Vancomicina/genética , Águas Residuárias/microbiologia , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Água , Esgotos , Enterococos Resistentes à Vancomicina/genética , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
5.
Microorganisms ; 8(4)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260074

RESUMO

A recent analysis of the Mediterranean Sea surface temperature showed significant annual warming. Since small picoplankton microorganisms play an important role in all major biogeochemical cycles, fluxes and processes occurring in marine systems (the changes at the base of the food web) as a response to human-induced temperature increase, could be amplified through the trophic chains and could also significantly affect different aspects of the structure and functioning of marine ecosystems. In this study, manipulative laboratory growth/grazing experiments were performed under in situ simulated conditions to study the structural and functional changes within the microbial food web after a 3 °C increase in temperature. The results show that a rise in temperature affects the changes in: (1) the growth and grazing rates of picoplankton, (2) their growth efficiency, (3) carrying capacities, (4) sensitivity of their production and grazing mortality to temperature, (5) satisfying protistan grazer carbon demands, (6) their preference in the selection of prey, (7) predator niche breadth and their overlap, (8) apparent uptake rates of nutrients, and (9) carbon biomass flow through the microbial food web. Furthermore, temperature affects the autotrophic and heterotrophic components of picoplankton in different ways.

6.
Environ Microbiol ; 21(7): 2469-2484, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31001886

RESUMO

Temperature and phosphorus positively interacted in controlling picoplankton biomass production and its transfer towards higher trophic levels. Two complementary approaches (experimental and field study) indicated several coherent patterns: (1) the impact of temperature on heterotrophic bacteria was high at temperatures lower than 16°C and levelled off at higher temperatures, whereas this impact on autotrophic picoplankton was linear along the entire range of the investigated temperatures; (2) the addition of phosphorus increased the values of picoplankton production and grazing, but did not change the nature of their relationships with temperature substantially; (3) the picoplankton carbon flux towards higher trophic levels was larger during the warmer months (grazing by HNF dominated during the warmer period and by ciliates during the colder period) and also strengthened in conditions without phosphorus limitation; (4) the hypothesis that the available phosphorus can be better utilized at higher temperatures was confirmed for both autotrophic and heterotrophic picoplankton; (5) the hypothesis that the rise in temperature stimulates growth only in conditions of sufficient phosphorus was confirmed only for heterotrophic bacteria. Therefore, in the global warming scenario, an increase of the picoplankton carbon flux towards higher trophic levels can be expected in the Adriatic Sea, particularly under unlimited phosphorus conditions.


Assuntos
Bactérias/metabolismo , Fósforo/metabolismo , Plâncton/metabolismo , Processos Autotróficos , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Biomassa , Ciclo do Carbono , Processos Heterotróficos , Oceanos e Mares , Plâncton/classificação , Plâncton/genética , Plâncton/crescimento & desenvolvimento , Temperatura
7.
J Environ Sci (China) ; 75: 145-162, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30473280

RESUMO

Microbial transformations of toxic monomethylmercury (MMHg) and dissolved gaseous mercury (DGM) at the lower levels of the marine food web are not well understood, especially in oligotrophic and phosphorus-limited seas. To examine the effects of probable phosphorus limitation (PP-limitation) on relations between mercury (Hg) fractions and microorganisms, we determined the total mercury (THg), total methylated mercury (MeHg), DGM, and microbiological and chemical parameters in the Central Adriatic Sea. Using statistical analysis, we assessed the potential microbial effects on Hg transformations and bioaccumulation. Only in the absence of PP-limitation conditions (NO-PP-limitation) is MeHg significantly related to most chemical and microbial parameters, indicating metabolism-dependent Hg transformations. The heterotrophic activity of low nucleic acid bacteria (abundant in oligotrophic regions) seems responsible for most of Hg methylation under NO-PP-limitation. Under these conditions, DGM is strongly related to microbial fractions and chlorophyll a, indicating biological DGM production, which is probably not metabolically induced, as most of these relations are also observed under PP-limitation. MMHg biomagnification was observed through an increased bioaccumulation factor from microseston to mesozooplankton. Our results indicate that Hg transformations and uptake might be enhanced under NO-PP-limitation conditions, emphasizing their impact on the transfer of Hg to higher trophic levels.


Assuntos
Monitoramento Ambiental , Mercúrio/química , Fósforo/metabolismo , Água do Mar/química , Microbiologia da Água , Poluentes Químicos da Água/química , Fósforo/química , Água do Mar/microbiologia
8.
Mar Pollut Bull ; 135: 150-158, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30301024

RESUMO

This study defines performance characteristics of the temperature-modified ISO 9308-1 method for E. coli enumeration in bathing water. After a 4-hour resuscitation period at 36 ±â€¯2 °C, the incubation temperature was changed to 44 ±â€¯0.5 °C. Elevated incubation temperature significantly suppressed the growth of thermo-intolerant bacteria, and enhanced the selectivity of Chromogenic Coliform Agar (CCA) up to 49.5% for inland and up to 66.0% for coastal water. Consequently, most of the selectivity-related performance characteristics are improved. Relative recovery was determined by comparing an alternative method against the reference, ISO 9308-1:2014 method, following the criteria set out in ISO 17994:2014. Temperature modification did not significantly alter the results and the methods were evaluated as "not different" for both, coastal and inland waters. Chromogenic Coliform Agar was assessed as a suitable medium for reliable E. coli enumeration in bathing water when incubated for 17-19 h at 44 ±â€¯0.5 °C after the 4-5 h resuscitation period at 36 ±â€¯2 °C.


Assuntos
Técnicas Bacteriológicas/métodos , Escherichia coli , Microbiologia da Água , Ágar , Praias , Meios de Cultura , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/isolamento & purificação , Água do Mar/microbiologia , Temperatura
9.
FEMS Microbiol Ecol ; 94(10)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30137302

RESUMO

An assessment of the temperature increase effect on processes within the microbial food web provides a better insight into the carbon transfer and energy flow processes in marine environments in the global warming perspective. Modified laboratory dilution experiments that allow simultaneous estimates of protozoan grazing and viral lysis on picoplankton groups (bacteria, Prochlorococcus, Synechococcus and pico-eukaryotic algae) under in situ and 3°C above in situ temperatures were performed at seasonal scale. Picoplankton mortality due to grazing was generally higher than that caused by viral lysis, especially in the cold months. The largest part of HNF carbon demand was satisfied by grazing on bacteria throughout the year. Although ciliates satisfied their carbon demand predominantly through grazing on HNF and bacteria, the role of autotrophic picoplankton (APP) as their prey increased significantly in the cold months. Bacteria constituted the most important host for viruses throughout the year. However, during the warm months, APP groups were also significant hosts for viral infection. Under the warming condition the amount of picoplankton biomass transferred to protozoan grazers exceeded the lysed biomass, suggesting that global warming could further increase picoplankton carbon flow toward higher trophic levels in the Adriatic Sea.


Assuntos
Ciclo do Carbono , Mudança Climática , Cadeia Alimentar , Microbiologia da Água , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Biomassa , Eucariotos/crescimento & desenvolvimento , Eucariotos/metabolismo , Mar Mediterrâneo , Temperatura , Vírus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...